
Handout 1. Hitting springs with hammers

Reference: Edwards & Penney, Elementary Di¤erential Equations with Boundary Value Problems, Chap-
ters 2, 4.
We have an object with mass m attached to a linear spring with spring constant k > 0 and subject to

linear damping with constant c > 0. Its position is denoted by y (t). We subject it to a known external force
F (t). We also know its initial position y0 and velocity v0. Then we have

my00 + cy0 + ky = F (t) ; y (0) = y0, y0 (0) = v0

We assume that the reader is familiar with the (real or complex) solutions of this equation in the homogeneous
case F = 0 and with the method of undetermined coe¢ cients for the case where F is of the form p (t) ekt cos!t
or p (t) ekt sin!t. In the following we�ll mostly concentrate on the case where c = 0 for simplicity.
Let

H (t) =

�
0 t � 0
1 t > 0

Here H is for "Heaviside", but we�ll call it the unit step function. (We reserve the letter u for later use.)
Note: setting H (0) = 0 (and not 1, or even 1=2, which is sometimes a good idea) in this de�nition

is entirely unimportant at this point; the value of H (0) will rarely matter to us. This will be a theme
throughout: individual values of functions are often not as important as one is led to believe in high school
or introductory college mathematics. We�ll see why presently. We use Ha to denote the shifted step

Ha (t) = H (t� a)

that turns on at t = a and we also de�ne the rectangular pulse

Ra;b (t) = Ha (t)�Hb (t) =
�
0 t � a; t > b
1 a < t � b

1. The simple hammer, part 1. Let m;!; a; J;�t > 0, with �t thought of as small, and consider the IVP

my00 +m!2y = F (t) ; y (0) = 0; y0 (0) = 0

where

F (t) =
J

�t
Ra;a+�t (t)

(a) What are the SI units of all of the quantities m;!; a; J;�t? What is the spring constant equal to
in this problem?

(b) What is
R1
0
F (t) dt? What does that measure physically? Are the units right?

(c) What is y (t) for t < a?

(d) The discontinuity of F at amight give us pause, appearing in the context of a di¤erential equation.
But is going from F to y more like di¤erentiating or integrating? How many times? (Hint: what
if ! is very small, so it can be ignored?) Can we integrate discontinuous functions? If we integrate
a step function the appropriate number of times, will it be continuous? Di¤erentiable? Twice
di¤erentiable?

(e) Guided by the previous part, let�s solve the problem in three pieces, and declare that the pieces
should �t together to be a di¤erentiable function.

i. Based on that, write down the IVP that we need to solve in the interval [a; a+�t] and solve
it. Hint: it will be prettier if you write everything as a function of t � a, the time since the
start of the forcing.

ii. Use the value and derivative of the solution y (t) that you obtained in the previous part as
your initial conditions for the IVP for y on [a+�t;1). (Similar hint as before.) Show that
you can write the solution on this interval in the form

y (t) = (some constant) (cos! (t� (a+�t))� cos! (t� a))

iii. Write the full solution (for all t � 0) in two ways:
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A. as a piecewise function;
B. as a function of the form

(something)Ha (t) + (something)Ha+�t (t)

iv. Graph your solution (in all three intervals) explicitly in the case m = 1 kg; ! = 2 s�1; J =
4 N s; a = 3 s; �t = 10 s. Do the three parts link up correctly? What is qualitatively
di¤erent between the intervals [3; 13] and [13;1)?

v. Graph your solution (in all three intervals) explicitly in the case m = 1 kg; ! = 2 s�1; J =
4 N s; a = 3 s; �t = 0:1 s. How does this di¤er from the previous graph? Does the solution
in the interval [3:1;1) look more like a shifted cosine or a shifted sine?

(f) We�d like to see a simple reason why the solution in [a+�t;1) is of the form you found in (e)(ii)
above. So let�s solve the problem in another way, one which will bring in a big theme.

i. Find the solution to

my00 +m!2y =
J

�t
Ha (t)

(Hint: this should require no additional work!)
ii. Find the solution to

my00 +m!2y = � J

�t
Ha+�t (t)

(Same hint!)
iii. Find the solution to

my00 +m!2y =
J

�t
(Ha (t)�Ha+�t (t))

(Hint: here�s where our big theme comes in: linearity.)
Note that this method breaks up the forcing data "vertically" (along the y-axis) by seeing
that one function is a sum of two simpler functions, whereas the piecewise method breaks
up the data "horizontally" (along the x-axis). We can see that sometimes (not always) the
vertical method is far simpler. That�s another big theme, one that is crucial in the de�nition
of Lebesgue integration.

2. The simple hammer, part 2.

(a) Temporarily denote the solution you found in 1(e)(ii) by ya (t) to emphasize its dependence on
a. Show that for some other time b > 0, yb (t) = yb (t� (b� a)). Why does this make sense
physically? How is this a symmetry principle? (That will be another big theme.)

(b) Suppose we want to solve

my00 +m!2y = F (t) ; y (0) = 0; y0 (0) = 0

where

F (t) =
J1
�t
Ra;a+�t (t) +

J2
�t
Rb;b+�t (t)

with b � a + �t. Do we have to do this as a �ve-part piecewise problem, or is there a much
better way? (Hint: use another big theme, already introduced.) Does it matter if b = a+�t? If
b < a+�t?

(c) Suppose we want to solve

my00 +m!2y = F (t) ; y (0) = 0; y0 (0) = 0

with

F (t) =
NX
n=1

Jn
�t

�
Ran;an+1 (t)

�
where an = a+ n�t. How could we use what we�ve done to write down a solution easily? (Same
hint!)
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(d) Given an arbitrary forcing function F , could we approximate it by a function of the form in the
previous part? What does this remind you of from single-variable calculus?
Note: we would like to say that we can approximate a general F arbitrarily well by a �nite sum of
step functions as in part (h), and that in the limit, we could recover the solution y corresponding
to F as an appropriate limit of solutions to problems of the form in part (h). That brings us to
another theme: convergence of sequences of functions. This can seem like a very theoretical topic
(and it can be, and a very powerful one), but it is always tied (in principle) to concrete, practical
approximation schemes. For in fact, we might not know an analytic expression for the forcing
function F , and we may only know samples of its values. So an expression as in part (h) might
be as good an approximation to F as we can get.

3. The simple hammer, part 3. We are actually most interested in the case where �t is very small,
so that the impulse is delivered almost instantaneously (hence the phrase "hitting with a hammer").
In particular, we don�t care about the particular value of �t, and we seek a simple answer that is
independent of �t. This is a classic case in which we pass to a limit� the point of a limit is often to
idealize and simplify a situation that has a very small or very large parameter whose detailed value is
unimportant. (If we are mistaken, and its detailed value is important, then the limit will not exist.)

(a) Consider again the solution y (t) to the original problem in part 1. Hold a; J �xed and let �t! 0.
(Hint: think about the de�nition of the derivative, or use L�Hopital�s rule.) What is the resulting
function? Call it yham.

(b) Is yham continuous? Is it di¤erentiable? Is it twice di¤erentiable? What is limt!a+ y
0 (t) �

limt!a� y
0 (t)?

(c) Given that physically, we are transferring momentum J to an object with mass m "instanta-
neously", are the answers to (b) reasonable? Explain brie�y.
NOTE: It�s a bit dubious to claim that yham is a solution to a di¤erential equation when it does
not have all of the derivatives mentioned in the equation. It�s also not clear what the right hand
side F (t) is once we pass to the limit where �t ! 0. It would have to be an in�nitely narrow
and tall spike, which isn�t meaningful as an ordinary function. However this idealized solution is
far too useful to give up on grounds of squeamishness, and we already (in part 1) had a solution
that wasn�t twice di¤erentiable, so maybe we shouldn�t be too picky.
We will see various ways to usefully weaken the requirement that a function solve a di¤erential
equation, all based on local weighted averaging. I�ll introduce our �rst version of that idea in the
next lecture.
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